Distance-based Graph Invariants of Trees and the Harary Index
نویسندگان
چکیده
Introduced in 1947, the Wiener index W (T ) = ∑ {u,v}⊆V (T ) d(u, v) is one of the most thoroughly studied chemical indices. The extremal structures (in particular, trees with various constraints) that maximize or minimize the Wiener index have been extensively investigated. The Harary index H(T ) = ∑ {u,v}⊆V (T ) 1 d(u,v) , introduced in 1993, can be considered as the “reciprocal analogue” of the Wiener index. From recent studies, it is known that the extremal structures of the Harary index and the Wiener index coincide in many instances, i.e., the graphs that maximize the Wiener index minimize the Harary index and vice versa. In this note we provide some general statements regarding functions of distances of a tree, from which some of the extremal structures with respect to the Harary index (and a generalized version of it) are characterized. Among the results a recent conjecture of Ilić, Yu and Feng is proven. A case when the extremal structures of these two indices differ is also provided. Finally, we derive some previously known extremal results as immediate corollaries.
منابع مشابه
Product version of reciprocal degree distance of composite graphs
A {it topological index} of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. In this paper, we present the upper bounds for the product version of reciprocal degree distance of the tensor product, join and strong product of two graphs in terms of other graph invariants including the Harary index and Zagreb indices.
متن کاملNordhaus-Gaddum type results for the Harary index of graphs
The emph{Harary index} $H(G)$ of a connected graph $G$ is defined as $H(G)=sum_{u,vin V(G)}frac{1}{d_G(u,v)}$ where $d_G(u,v)$ is the distance between vertices $u$ and $v$ of $G$. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ ...
متن کاملDistance-Based Topological Indices and Double graph
Let $G$ be a connected graph, and let $D[G]$ denote the double graph of $G$. In this paper, we first derive closed-form formulas for different distance based topological indices for $D[G]$ in terms of that of $G$. Finally, as illustration examples, for several special kind of graphs, such as, the complete graph, the path, the cycle, etc., the explicit formulas for some distance based topologica...
متن کاملThree-center Harary index and its applications
The Harary index H can be viewed as a molecular structure descriptor composed of increments representing interactions between pairs of atoms, such that their magnitude decreases with the increasing distance between the respective two atoms. A generalization of the Harary index, denoted by Hk, is achieved by employing the Steiner-type distance between k-tuples of atoms. We show that the linear c...
متن کاملReciprocal Degree Distance of Grassmann Graphs
Recently, Hua et al. defined a new topological index based on degrees and inverse of distances between all pairs of vertices. They named this new graph invariant as reciprocal degree distance as 1 { , } ( ) ( ( ) ( ))[ ( , )] RDD(G) = u v V G d u d v d u v , where the d(u,v) denotes the distance between vertices u and v. In this paper, we compute this topological index for Grassmann graphs.
متن کامل